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Results 

Literature asserts that physiological data such 
as Heart Rate (HR), Respirational Rate (RR), 
Non-specific Skin Conductance Fluctations 
(NSF) are linked to the affect and arousal state 
(McDuff et al, 2014; Healey & Picard,2005; 
Drachen et al., 2010). The main assumption 
behind the model is that arousal and risk 
awareness are linked together. The goal is to 
create a model which may detect whether the 
driver’s risk awareness is adequate to the 
potential danger of a given traffic situation. 

 

Such a model could be useful in building 
advanced driver assistance systems, since it 
could answer questions such as: is the driver’s 
risk awareness adequate to the situation? If it 
is low in dangerous situations, assistance 
systems may take actions to raise risk 
awareness. Equally, assistance could be 
altered in the detrimental case of high risk 
awareness in harmless situations. Ultimately, 
such a model can be used to assert the 
human-in-the-loop requirement in manual 
driving or the adequate risk awareness in 
partial automated driving conditions.  

 

The modelling uses Bayesian Belief Networks 
(BBN) to learn conditional probabilistic 
distributions from driving experiment data. 
BBNs (Koller & Friedman, 2009) have a few 
advantages over other techniques. As 
graphical models, they are easy to understand 
for humans; they are white-box 
mathematically plausible models of 
uncertainty. They can be used for diagnostic, 
predictive, and intercausal reasoning and 
combine weak evidence to strong hypotheses. 
In the driving domain, they have been used 
for stress detection (Rigas et al., 2008). 
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This effort was run in conjunction with 
the TAK Use Case 9.2 Overtaking and 
the TAK AdCoS.   
The experiment consisted of 5 
conditions with different levels of 
automation and background tasks 
Condition 3 was later removed from 
futher explorationfor automation was 
not activated in all cases. 

During each experimental run, several overtaking situations 
were enacted, which should result in a varying objective danger 
of the situation. After each overtaking episode, the subjects 
were asked to assess the risk of the situation according to the 
scale on the right. 

As indicator for the danger in a given situation, we 
defined MinTTC as the minimum TTC to any other 
vehicle (rear or front) during an overtaking. The plot on 
the left shows indeed that Risk assessment and MinTTC 
correspond to each other. 

The goal was to create a Dynamic Bayesian  
Belief Network for online risk awareness inference.  
The BBN consists of several time slices. Each time  
slice has a sensor model, which links a state to  
sensor variables. Sensor variables are physiological 
 measurements such as Heart Rate (HR), Respirational Rate  
(RR) or Electro-Dermal Activity such as Non-Specific Skin  
Conductance Fluctuations (NSF). Other Sensor Variables include the  
objective traffic situation, which serves as indication for danger.  
In this case, we used the minimum Time-to-Collision (MinTTC) to any other  
vehicle during an overtaking episode.  
 
The Risk assessment by the driver, which is available for each overtaking episode  
during the experiment, is used as state variable in the model. A transitional model between time 
slices connects the Risk Awareness state variables. Sensor and transitional models are described by 
conditional probability distributions.  
 

 

 
The dynamic BBN spreads over four time slices. The data was time-homogenous, and as the latencies 
for Physiological response is at least 250 ms, we sampled the data with a frequency of 4 Hz. The above 
four-slice network such as in the figure above covers a full second of driving.  
 
To validate the dynamic BBN, we performed a 10-fold cross validation of the data and compared the 
performance with the prediction error rate for the node Risk3, which means that the test set contained 
physiological data and traffic situation for the last second. For the conditions, the prediction error rate 
was around 10% or lower, which means that the risk awareness was correctly predicted in 90% of the 
cases. When all conditions are used for training and validation, the error rate is considerably higher. 

The model can be used 
in an intelligent driver 
monitoring system to 
further assert if the 
risk awareness is 
adequate to the traffic 
situation. 

  Total Condition 1 Condition 2 Condition 4 Condition 5 

Observatio

ns 

34898 7561 9902 8320 9109 

Prediction 

Error Rate 

(risk3) 

0.24 0.069 0.104 0.077 0.108 


